Question	Answer	Marks	Guidance
1	С	1	
2	D	1	

Q	Question		Answer	Marks	Guidance
3	(a)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = $0.163 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ OR $0.1632 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ award 4 marks IF answer = $0.163 \text{ OR} 0.1632$ with incorrect units award 3 marks	4	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			Order w.r.t. ICl = 1 and order w.r.t $H_2 = 1 \checkmark$		Both orders = 1 mark
			rate = $k[ICl][H_2] \checkmark$		Correct rate equation or rearranged form = 1 mark
			$k = \frac{2.04 \times 10^{-2}}{0.250 \times 0.500} = 0.163 \text{ OR } 0.1632 \checkmark \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$		Candidates may use experimental data from experiments 2 or 3 to calculate the rate constant
					DO NOT ALLOW 0.16
		(ii)	rate = $k[ICl][H_2]$ (from (i))	1	
			= $0.163 \times 3 \times 10^{-3} \times 2 \times 10^{-3} = 9.78 \times 10^{-7} \text{ (mol dm}^{-3} \text{ s}^{-1} \text{)} \checkmark$		ALLOW ECF from (i) Note use of 0.1632 from (i) gives $9.79(2) \times 10^{-7}$

Question	Answer	Marks	Guidance
(b)	number of molecules $25 \degree C$ energy E_a Correct curve for higher temperature \checkmark Activation energy shown on diagram AND graph shows that at higher temperature (<i>owtte</i>) more molecules have energy above activation energy OR more molecules have enough energy to react \checkmark	2	Boltzmann distribution – must start at origin and must not end up at 0 on <i>y</i> -axis i.e. must not touch <i>x</i> -axis at high energy Maximum of curve to right AND lower than maximum of lower temperature curve AND above lower temp line at higher energy as shown in diagram
	Total	7	

Question	Answer	Marks	Guidance
4 (a)	Measure reduction of colour of bromine ✓	1	
(b)	Measure volume of CO_2 (produced) \checkmark	1	
(c)	Concentration of HCOOH would be constant ✓	1	
(d)*	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive conclusion which uses quantitative data from the graph to correctly identify and calculate initial rate AND half lives and reasoned order of Br₂ AND determination of <i>k</i> with units There is a well-developed conclusion showing a line of reasoning which is clear and logically structured. The working for initial rate, half life and order are clearly shown. Determination of k is clear and correct. Level 2 (3–4 marks) Reaches a sound, but not comprehensive, conclusion based on quantitative data from the graph. Correctly identifies and calculates initial rate AND half lives and reasoned order of Br₂ The conclusion has a line of reasoning presented with some structure. The initial rate and order is relevant and supported by correct evidence from the graph. There may be errors in the calculations which prevent the correct determination of k. 	6	Indicative scientific points may include: Initial rate • Evidence of tangent on graph drawn to line at t = 0 s AND gradient determined in range $4 \pm 1 \times 10^{-5}$ • <i>initial rate</i> expressed as gradient value with units of mol dm ⁻³ s ⁻¹ , e.g. <i>initial rate</i> = 4 × 10 ⁻⁵ mol dm ⁻³ s ⁻¹ Half lives and reasoned order of Br ₂ • Half life measured on graph OR within text OR stated in range 180–200 s • Constant half life OR two stated half lives within ±20 s AND conclusion that Br ₂ is 1st order Determination of <i>k</i> with units • Rate constant <i>k</i> clearly linked to initial rate OR half-life: $k = \frac{rate}{[Br_2]}$ OR $k = \frac{ln2}{t_{v_2}}$ • <i>k</i> determined correctly from measured initial rate or measured half life with units of s ⁻¹ , e.g. $k = 4 \times 10^{-3} s^{-1}$ from initial rate of 4×10^{-5} mol dm ⁻³ s ⁻¹ OR t _{1/2} of 175 s

Question	Answer	Marks	Guidance
	 Level 1 (1–2 marks) Reaches a simple conclusion using at least one piece of quantitative data from the graph. Attempts calculation of initial rate OR half lives and reasoned order of Br₂. The information selected from the graph is basic and communicated in an unstructured way. The calculations may not be clear and the evidence used from the graph may not be clearly shown. 0 marks No response or no response worthy of credit. 		
	Total	9	

Question	Answer	Marks	Guidance
5	Α	1	

Q	Question		Answer	Marks	Guidance		
6	(a)		$n(H_2O_2) = 2.30 \times \frac{25.0}{1000} \text{ OR} = 0.0575 \text{ (mol)} \checkmark$ vol $O_2 = \frac{0.0575}{2} \times 24000 = 690 \text{ cm}^3 \checkmark$ Collect in 1000 cm ³ /1 dm ³ measuring cylinder \checkmark	3	 ALLOW 0.69(0) dm³ 2nd mark subsumes 1st mark ALLOW 1000 cm³/1 dm³ syringe Needs a name of actual apparatus, not just 'container' 'measuring cylinder' without volume is insufficient DO NOT ALLOW burette For other possible apparatus, contact Team Leader ALLOW volumes from 700–1000 cm³ but should be realistic apparatus, e.g. 700, 750, 800, 850, 900, 950. 		
	(b)		Measure mass (loss) ✓	1	ALLOW weight for mass ALLOW take samples and titrate (remaining H ₂ O ₂)		

Question	Answer	Marks	Guidance
Question (c)*	AnswerPlease refer to the marking instructions on page 5 of mark scheme for guidance on marking this question.Level 3 (5–6 marks)A comprehensive conclusion using quantitative data from the graph to correctly determine initial rateAND half lives/gradient with 1st order conclusion for H ₂ O ₂ AND determination of k.There is a well-developed line of reasoning which is 	Marks 6	GuidanceIndicative scientific points may include:Initial rate• Tangent shown on graph as line at $t = 0$ s• Gradient determined in range: $1.5 - 2.0 \times 10^{-3}$ e.g. $\frac{2.3}{1300} = 1.77 \times 10^{-3}$ • <i>initial rate</i> as gradient value with units: mol dm ⁻³ s ⁻¹ • <i>initial rate</i> as gradient value with units: mol dm ⁻³ s ⁻¹ • <i>For other methods contact TL</i> Evidence for 1st order 2 methods• 1st order clearly linked to half-life OR 2 gradients:1. Half life• Half life shown on graph• Half life shown on graph at c and c/2• Cradient at c/2 is half gradient at ce.g. $c = 2.3$ mol dm ⁻³ , gradient = 1.6×10^{-3} • AND $c = 1.15$ mol dm ⁻³ , gradient = 0.8×10^{-3} • F
	 Supported by evidence from the graph. Level 1 (1–2 marks) Reaches a simple conclusion using at least one piece of quantitative data from the graph. Attempts to calculate initial rate OR half life. There is an attempt at a logical structure with a reasoned conclusion from the evidence. 0 marks No response worthy of credit. 		AND $c = 1.15$ mol dm ⁻¹ , gradient = 0.8×10^{-10} • For chosen method, conclusion: H ₂ O ₂ is 1st order Determination of k 2 methods • k clearly linked to rate OR half-life: $k = \frac{rate}{[H_2O_2]}$ e.g. $k = \frac{1.6 \times 10^{-3}}{2.3} = 7 \times 10^{-4}$ s^{-1} OR $k = \frac{\ln 2}{t_{1/2}}$ e.g. $k = \frac{0.693}{950} = 7.3 \times 10^{-4} \text{ s}^{-1}$
	Total	10	

C	Question		Answer	Marks	Guidance
7	(a)	(i)	(<i>rate</i> =) k [H ₂ O ₂] [I [−]] ✓	3	Square brackets required IGNORE any state symbols IGNORE [H ⁺] ⁰
			$k = \frac{rate}{[H_2O_2][I^-]} = \frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100} = 0.02(00) \checkmark$ units: dm ³ mol ⁻¹ s ⁻¹ \checkmark		ALLOW ECF from incorrect rate equation BUT units must fit with rate equation used ALLOW mol ⁻¹ dm ³ s ⁻¹ OR in any order
					NOTE $K_{\rm c}$ expression with calculation and units 0 marks
	(a)	(ii)	Plot graph using ln <i>k</i> AND 1/ <i>T</i> ✓	3	Unless otherwise stated, assume, that In <i>k</i> is on y axis and 1/ <i>T</i> is on x axis IGNORE intercept
			(Measure) gradient ✓ Independent mark		ALLOW gradient = $(-)\frac{E_a}{R}$
			 <i>E</i>_a = (−)<i>R</i> × gradient OR (−)8.314 × gradient ✓ <i>Independent mark, even if variables for graph are incorrect</i> 		NOTE: ALLOW 'Inverse graph' (special case)
			 Subsumes 'gradient' mark 		(Measure) gradient ✓ Independent mark
					$E_{a} = (-)\frac{R}{\text{gradient}} \text{ OR } (-)\frac{8.314}{\text{gradient}}$
					OR gradient = $(-)\frac{\kappa}{E_a} \checkmark$ Subsumes 'gradient' mark

Question	Answer	Marks	Guidance
(b)	ALLOW equilibrium sign in equations provided reactants on left	4	ALLOW correct multiples IGNORE state symbols
	Reaction of U.O. with MrO.		ALLOW uncancelled H ₂ O and H ⁺ H ₂ O ₂ + MnO ₂ + 4H ⁺ \rightarrow O ₂ + Mn ²⁺ + 2H ₂ O + 2H ⁺
	Reaction of H_2O_2 with MnO_2 : $H_2O_2 + MnO_2 + 2H^+ \rightarrow O_2 + Mn^{2+} + 2H_2O \checkmark$ Reaction of H_2O_2 with Mn^{2+} : $H_2O_2 + Mn^{2+} \rightarrow MnO_2 + 2H^+ \checkmark$		$H_2O_2 + Mn^{2+} + 2H_2O + 2H^+ \rightarrow MnO_2 + 4H^+ + 2H_2O$
	Use of <i>E</i> data Use of <i>E</i> data to support equation(s) above or half direction of provided half equations (one including MnO_2) \checkmark Also look for evidence around half equations		 Examples More negative <i>E</i> moves to left ORA Reduction half equation to the right ORA Most positive <i>E</i> is reduced ORA Calculated <i>E</i> cell = +0.81 V (from top 2) OR +0.27 V (from bottom 2)
	MnO₂ regenerated/reformed ✓ Must be linked to an equation showing MnO₂ as reactant and an equation showing MnO₂ as product		ALLOW combining of equations above to show that MnO_2 is used and reformed
(C) (i	H ₃ C $$ O O H_3 C $$ O $$ O H_3 C $$ O $$ O H_3 C $$ O $$	1	ALLOW $H_3C - O - C - O + O + O + O + O + O + O + O + O + O$

C	Question		Answer	Marks	Guidance	
(Quest	ion (ii)	AnswerFIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = $0.023(125)$ (mol) award 3 marks for calculation K_c expression $(K_c =) \frac{[CH_3COOOH]}{[H_2O_2] [CH_3COOH]} \checkmark$ [CH_3COOOH]= $0.37 \times 0.500 \times 0.500 = 0.0925$ (mol dm ⁻³) \checkmark Subsumes K_c expression	Marks 3		GuidanceIf there is an alternative answer, check for any ECF creditALLOW $0.37 = \frac{[CH_3COOOH]}{0.500 \times 0.500}$ ALLOW ECF but ONLY if 0.37 AND 0.5×0.5 have been usedCommon errors 0.076 2 marks
			<i>n</i> (CH ₃ COOOH) = 0.0925 × ²⁵⁰ / ₁₀₀₀ = 0.023(125) (mol) ✓	14		Use of $[CH_{3}COOOH]^{2}$ 0.675 2 marks Use of 0.5 for $[H_{2}O]$ on K_{c} 0.169 2 marks Inverted K_{c} 0.338 1 mark Inverted K_{c} AND 0.5 for $[H_{2}O]$ 5.78 × 10 ⁻³ 2 marks $\times \frac{250}{1000}$ before $[CH_{3}COOOH]$
			Total	14		

Question	Answer	Marks	AO element	Guidance
8	A	1	AO1.1	

Question	Answer	Marks	Guidance
9 (a)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive conclusion which uses quantitative results for determination of the reaction orders. AND Determines k from correct rate equation. AND Proposes the two-step mechanism which adds up to overall equation with no intermediate electrons. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. The working for the scientific content is clearly linked to the experimental evidence. Level 2 (3–4 marks) Reaches a sound, but not comprehensive, conclusion based on the quantitative results. AND Correctly identifies the orders and rate equation. AND Calculates the rate constant OR Proposes the two-step mechanism with reactants of first step matching rate equation or matches orders There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. The working for the scientific content is clearly linked to the experimental evidence 	6	Indicative scientific points may include: Orders and rate equation • Fe ³⁺ 1st order AND ⁻ 2nd order OR rate = k[Fe ³⁺] [I ⁻] ² • Supported by experimental results Calculation of k including units • k correctly calculated AND correct units, e.g. $k = \frac{8.10 \times 10^{-4}}{(4.00 \times 10^{-2}) \times (3.00 \times 10^{-2})^2} = 22.5$ • dm ⁶ mol ⁻² s ⁻¹ OR mol ⁻² dm ⁶ s ⁻¹ Two-step mechanism • Two steps add up to give overall equation • Slow step/ rate-determining step matches stoichiometry of rate equation. • Each step balances by species and charge e.g. Fe ³⁺ (aq) + 2\Gamma(aq) \rightarrow [Fel ₂] ⁺ SLOW Fe ³⁺ (aq) + [Fel ₂] ⁺ \rightarrow 2Fe ²⁺ (aq) + I ₂ (aq) FAST Fe ³⁺ (aq) + I ₂ ⁻ (aq) \rightarrow Fe ²⁺ (aq) + I ₂ (aq) SLOW Fe ³⁺ (aq) + I ₂ ⁻ (aq) \rightarrow Fe ²⁺ (aq) + I ₂ (aq) FAST Fe ³⁺ (aq) + 2\Gamma(aq) \rightarrow Fe ²⁺ (aq) = KaST Fe ³⁺ (aq) + 2\Gamma(aq) \rightarrow Fe ²⁺ (aq) = KaST Fe ³⁺ (aq) + 2\Gamma(aq) \rightarrow Fe ²⁺ (aq) = KaST Fe ³⁺ (aq) + Fe ⁺ \rightarrow 2Fe ²⁺ (aq) = KaST There may be other feasible possibilities

Q	uestion	Answer	Marks	Guidance
		Level 1 (1–2 marks) Attempts to reach a simple conclusion for orders AND Attempts a relevant rate equation.		
		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant The working for the scientific content is clearly linked to the experimental evidence.		
		0 marks No response or no response worthy of credit.		

Question	Answer		Guidance
(b) (i)	$\mathbf{F}_{a} = (-) \text{ gradient} \times 8.314 \checkmark$ $\mathbf{F}_{a} = (-) \text{ gradient} \times 8.314 $	3	ALLOW lines which do not intercept y-axis ALLOW mark for gradient if correct working shown within E_a calculation without gradient being calculated separately ALLOW $\pm 0.8(00) \rightarrow \pm 1.04(0)$ (<i>omission of 10</i> ⁻³) ALLOW ECF for calculated gradient x 8.314 If value of gradient not shown separately, ALLOW E_a in range: $6650 \rightarrow 8650$ OR $6.65 \rightarrow 8.65$ (<i>omission of 10</i> ⁻³) This mark subsumes gradient mark NOTE: Omission of 10 ⁻³ can get 1st 2 marks

Question	Answer	Marks	Guidance
(ii)	Intercept shown on graph could be by extrapolation of line, or label on y axis AND In A linked to intercept value e.g. In A = 31.4 \checkmark Calculation of A = e ^{intercept} \checkmark e.g. A = e ^{31.4} = 4.33 × 10 ¹³	2	ALLOW $y = 31.4$ ALLOW substitution of correct values of ln k and 1/T into ln k = $-E_a/R \ge 1/T + \ln A$ to give a value of ln A which approximately matches the intercept if given $ln A = ln k + (E_a/R \ge 1/T)$ Calculation of $A = e^{lnA}$ OR $e^{ln k+ (Ea/R \ge 1/T)}$ ALLOW ECF from incorrect ln A $e^{31.2} = 3.55 \ge 10^{13}$ $e^{31.3} = 3.92 \ge 10^{13}$ $e^{31.45} = 4.56 \ge 10^{13}$ $e^{31.5} = 4.12 \ge 10^{13}$ $e^{31.5} = 4.79 \ge 10^{13}$ $e^{31.6} = 5.29 \ge 10^{13}$ $e^{31.8} = 6.46 \ge 10^{13}$ $e^{31.9} = 7.14 \ge 10^{13}$ $e^{32.0} = 7.9(0) \ge 10^{13}$ $e^{32.1} = 8.73 \ge 10^{13}$ IF 2 DP answer given, check rounding from calculator value, not 3 DP values given Eg $e^{31.7} = 5.8497 \ge 10^{13}$ and $= 5.8 \ge 10^{13}(2SF)$
	Total	11	

Question	Answer	Marks	AO	Guidance
Question			element	Guidanee
10	C	1	AO2.6	

Question	Answer	Marks	AO element	Guidance
	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Most evidence used to determine the correct orders AND rate equation AND rate constant. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some evidence used to determine two orders correctly AND rate equation AND rate constant consistent with orders. OR Little evidence used to determine all three orders correctly AND rate equation AND rate constant. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1–2 marks) Little evidence used to determine two orders correctly OR One order correct, with attempt to determine the rate equation AND rate constant. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6	3.1 ×4 3.2 ×2	Indicative scientific points may include: Orders Student 1 • zero order wrt Br ₂ Student 2 • 1st order wrt CH ₃ COCH ₃ Student 3 • 1st order wrt H ⁺ Explanations Student 1 • constant gradient OR linear negative gradient OR constant rate OR rate independent of concentration OR decreasing half-life Student 2 • straight line through 0,0 • OR rate directly proportional to [CH ₃ COCH ₃] OR [CH ₃ COCH ₃] × 2, rate × 2 Student 3 • [H ⁺] × 2, rate × 2 Rate equation, rate constant and units • rate = k[CH ₃ COCH ₃] [H ⁺] ALLOW rate = k [Br ₂] ⁰ [CH ₃ COCH ₃] ¹ [H ⁺] ¹ • $k = \frac{rate}{[CH_3COCH_3][H^+]}$ OR $\frac{1.25 \times 10^{-5}}{1.6 \times 0.2}$ • $k = 3.9 \times 10^{-5}$ • units: dm ³ mol ⁻¹ s ⁻¹ (Any order, e.g. mol ⁻¹ dm ³ s ⁻¹)
	Total	6		

Question		on Answer	Marks	AO element	Guidance	
12	(a)	 Polar bonds F (atom) is more electronegative (than C atom) OR F is very/the most electronegative ✓ No overall dipole (CF₄ is) symmetrical OR tetrahedral OR dipoles cancel OR dipoles act in opposite directions ✓ 	2	AO1.1 ×2	Mark independently ALLOW C and F have different electronegativities OR the atoms have different electronegativities BUT DO NOT ALLOW C is more electronegative ALLOW C-F shown with correct dipole, i.e. C ^{δ+} -F ^{δ-} . IGNORE square planar IGNORE polar bonds cancel BUT ALLOW polarities cancel IGNORE charges cancel	
	(b)	 (Molecules) contain ²H OR deuterium/D ³H OR tritium/T OR O/H atoms have more neutrons (than ¹H) OR (different) O/H isotopes are present OR (Molecules are) D₂O ✓ 	1	AO1.2	ALLOW Molecules contain ¹⁸ O Idea of isotopes is critical BUT DO NOT ALLOW isotopes of elements different from H and O (e.g. C)	
	(c)	$p(O_2) = 0.21 \times 1.00 \times 10^5$ = 21,000 / 2.1 × 10 ⁴ (Pa) ✓	1	AO2.2		

Question	Answer	Marks	AO element	Guidance
(d)	FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks $n(C_3H_8)$ $n(C_3H_8) = \frac{42.0 \times 10^3}{24.0}$ OR $\frac{42.0 \times 10^6}{24000}$ OR 1750 (mol) \checkmark Mass of CO ₂ mass CO ₂ = 3 × 1750 × 44	2	AO2.2	ALLOW use of ideal gas equation with a sensible temperature (20–25°C) and pressure (100/101 kPa) At 20°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 293} = 1724 \text{ (mol)}$ $\rightarrow \sim 227586 \text{ (g) (dependent on roundings)}$ At 25°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 298} = 1695 \text{ (mol)}$ $\rightarrow \sim 223767 \text{ (g) (dependent on roundings)}$ ALLOW use of 8.31 for <i>R</i> ALLOW ECF from <i>n</i> (C ₃ H ₈)
(e)	= 231 000 / 2.31 × 10 ³ (g) ✓ ALLOW 2 SF, e.g. 230 000 Initial rate = $10^{-2} \times 2.4 \times 10^{-3} \text{ s}^{-1}$ = 2.4 × 10 ⁻⁵ (mol dm ⁻³ s ⁻¹) ✓	1	AO2.6 AO2.2	Common errors from 24.0 dm³ 231 \rightarrow 1 mark No conversion of m ³ to dm ³ 0.231 \rightarrow 1 mark Confusion of cm ³ and dm ³ 77 000 \rightarrow 1 mark No 3 \times for CO ₂
(f)	FIRST, CHECK ANSWER IF answer = 9.03 × 10 ²² , award 2 marks $n(P_2O_5) = \frac{4.26}{142.0}$ OR 0.03(00) (mol) \checkmark O atoms = 5 × 0.0300 × 6.02 × 10 ²³ = 9.03 × 10 ²² \checkmark Minimum 3 SF required	2	AO2.2	Alternative approach $n(O \text{ atoms}) = \frac{4.26}{142.0} \times 5 = 0.15 \checkmark$ O atoms = 0.15 × 6.02 × 10 ²³ = 9.03 × 10 ²² ✓ ALLOW ECF from incorrect $n(P_2O_5)$ ALLOW use of 6.022 × 10 ²³
	Total	9		

Question	Answer	Marks	AO element	Guidance
13	D	1	2.6	
14	C	1	1.2	ALLOW 2 in the answer box

Question		on	Answer	Marks	AO element	Guidance
15	(a)	(i)	To keep [CH ₃ OH] (effectively) constant OR Zero order with respect to CH ₃ OH OR To ensure equilibrium is far to the right ✓	1	3.3	ALLOW Change in [CH ₃ OH] is negligible ALLOW rate is independent of [CH ₃ OH] IGNORE Methanol doesn't run out/is not limiting reagent.
		(ii)	One half-life t ¹ / ₂ between 102 and 110 (mins) Two half-lives calculated OR evidence on the graph of two half-lives AND constant half-life/values (means first order) ✓	2	3.1 3.2	ALLOW any two combinations of positions, e.g. 5 and 2.5 AND 4 and 2 AND 3 and 1.5
		(iii)	Using gradients Evidence of tangent at $t = 0$ and intercept between $100 - 140 \text{ (min) } \checkmark$ Correctly calculated gradient in the range of 2.9×10^{-5} to 4.0×10^{-5} (mol dm ⁻³ min ⁻¹) \checkmark OR Using half-life For $t_{2} = 106 \text{ min}, k = \frac{\ln 2}{t_{2}} = 0.00654 \text{ (min}^{-1}) \checkmark$ rate $= 0.00654 \times 5 \times 10^{-3}$ $= 3.27 \times 10^{-5} \text{ (mol dm}^{-3} \text{ min}^{-1}) \checkmark$	2	3.1×1 3.2×1	ALLOW ECF from value of t½ in (a)(ii)

Q	uestion	Answer		Marks	AO element	Guidance
	(b)	FIRST CHECK THE ANSWER ON AN If answer = 7.4 award 4 marks	SWER LINE	4		ALLOW minimum of 2SF throughout
		Initial moles of reactants $n(CH_3OH)$ initial $=\frac{9.6}{32}=0.3$ -(mol) AND $n(CH_3COOH)$ initial $=\frac{12}{60}=0.2$ (mol	1 mark		1.2×1	
		Equilibrium moles n(CH ₃ COOH) reacted = 0.2 - 0.0 AND n(CH ₃ OH) equil = 0.3 - 0.17 n(CH ₃ COOCH ₃) equil AND n(H ₂ O) equil <i>K</i> _c calculation	2 marks 03 = 0.17 (mol) = 0.13 (mol) ✓ = 0.17 (mol) = 0.17 (mol) ✓ 1 mark		2.8×3	ALLOW ECF from initial moles ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct ALLOW up to calculator answer of 7.41025641
		$K_{\rm c} = \frac{0.17/V \times 0.17/V}{0.13/V \times 0.03/V} = 7.4 \checkmark$				
			Total	9		